SET-2

Arrays, Tables and Set

0	S7
1	S1
2	
3	S4
4	S2
5	
6	S5
7	
8	S6
9	S3

Fig. 1

2. The keys 12, 18, 13, 2, 3, 23, 5 and 15 are inserted into an initially empty hash table of length 10 using open addressing with hash function $h(k) = k \mod 10$ and linear probing. What is the resultant hash table?

3.	(A)			(B)			(C)			(d)			
		0			0			0			0		
		1			1			1			1		
		2	2		2	12		2	12		2	12, 2	
		3	23		3	13		3	13		3	13, 3, 23	
		4			4			4	2		4		
		5	15		5	5		5	3		5	5,15	
		6			6			6	23		6		
		7			7			7	5		7		
		8	18		8	18		8	18		8	18	
		9			9			9	15		9		

4. Consider a hash table of size 11 that uses open addressing with linear probing. Let $h(k) = k \mod 11$ be a hash function used. A sequence of records with keys

43 36 92 87 11 4 71 13 14

is inserted into an initially is inserted?	empty hash table, the bi	ins of which are indexed fro	om zero to ten. What is the index of the bin into which the last rec	cord
(A) 3 (B) 4 (C) 6 (D) 7				
The minimum number of	comparisons required to	determine if an integer app	opears more than n/2 times in a sorted array of n integers is	
(A) $\Theta(n)$ (B) $\Theta(\log n)$ (C) $\Theta(\log^* n)$ (D) $\Theta(1)$				
Consider a hash function to key hashed collides with a			is 20. After hashing of how many keys will the probability that any	new
(A) 5	(B) 6 (C) 7 (D) 10)		
the following is the content empty location in the table (A) 8, -, -, -, -, 10 (B) 1, 8, 10, -, -, -, 3 (C) 1, -, -, -, -, 3 (D) 1, 10, 8, -, -, -, 3	nts of the table when the e. Duckets and uses linear p	e sequence 1, 3, 8, 10 is inse	tion (3x + 4) mod 7. Assuming the hash table is initially empty, which exted into the table using closed hashing? Note that – denotes an accordance of the stable using closed hashing? Note that – denotes and the hash function used is key % could the key values are integers and the hash function used is key % could the key values 142 be inserted?	
(A) 2	(B) 3	(C) 4	(D) 6	
what would be the best w (A) An array of 5 (B) An array of 1 (C) An array of 5	ay for P to store the freq 60 numbers 00 numbers	quencies?	res of 500 students. It then prints the frequency of each score abov	e 50.
		ys A and B respectively. Ea y of an algorithm to compu	ach array can be stored either in row-major or column-major ordute $M_1 \times M_2$ will be	ler in
(B) Best if both a	row-major, and B is in c are in row-major order are in column-major orde c of the storage scheme	•		
An advantage of chained I	nash table (external hash	ning) over open addressing	scheme is	
(A) Worst case (B) Space used (C) Deletion is	e complexity of search or	perations is less		

5.

6.

7.

10.

11.

12.

(i) What is the worst-case timing complexity of inserting n elements into such a table?

 $\label{lem:consider} \textbf{Consider a hash table with chaining scheme for overflow handling:}$

(11)	For what type of instance	es does this hashin	g scheme take the wors	t case time for insertion?

- 13. Let A be a n x n matrix such that the elements in each row and each column are arranged in ascending order. Draw a decision tree which finds 1st, 2nd and 3rd smallest elements in minimum number of comparisons
- 14. An array A contains n integers in locations A[0], A[1],, A[n-1]. It is required to shift the elements of the array cyclically to the left by K places, where 1 ≤ K ≤ n-1. An incomplete algorithm for doing this in linear time, without using another array is given below. Complete the algorithm in the blanks. Assume all variables are suitably declared.

- 15. An array A contains n integers in non-decreasing order, A[1] ≤ A[2] ≤ ≤ A[n]. Describe, using Pascal-like pseudo code, a linear time algorithm to find i, j such that A[i] + A[j] = a given integer M, if such i, j exist.
- 16. A two dimensional array A[1..n][1..n] of integers is partially sorted if

end;

The smallest item is deleted. Complete the following O(n) procedure to insert item x (which is guaranteed to be smaller than any item in the last row or column) still keeping A partially sorted. (4)

procedure insert(x: integer); var i, j: <u>integer</u>; begin i:= 1; j:= 1; A[i][j]:= x; (1) (2) x> if A[i+1][j] < A[i][j] then begin (3) (4) A[i][j]:=A[i+1][j]; i:=i+1;(5) <u>end</u> (6) else begin

	(7)		
	(8)	<u>end</u>	
	(9)	A[i][j]:=	
end			

17. Let A be a two dimensional array declared as follows:

A: array [1 ... 10] [1 ... 15] of integer;

Assuming that each integer takes one memory locations the array is stored in row-major order and the first element of the array is stored at location 100, what is the address of element A[i][j]?

(a)
$$15i + j + 84$$
 (b) $15j + i + 84$ (c) $10i + j 89$ (d) $10j + i + 89$

- 18. Suppose you are given an array s[1 .. n] and a procedure *reverse*(s, i, j) which reverses the order of elements in s between positions i and j (both inclusive). What does the following sequence do, where 1 ≤ k < n
- 19. Consider the following declaration of a two dimensional array in C: Char a[100][100];

Assuming that the main memory is byte addressable and that the array is stored starting from address 0, the address of a[40][50] is

- A. 4040
- B. 4050
- C. 5040
- D. 5050