
CHAPTER 2

DATA TYPES AND OPERATORS IN C

C is a just a language specification and C compilers (which translates C code to machine

code) are made by different organizations/individuals. So, in order to make a C program

work across multiple compilers, C standard is important.

2.1 A little about C standard

1970 1975 1980 1985 1990 1995 2000 2005 2010

C
la

ng
ua

ge
de

ve
lo

pe
d

by
D

en
ni

s R
itc

hi
e

K
&
R

bo
ok

re
le

as
ed

, w
hi

ch
w

as
us

ed
as

a
re

fe
re

nc
e
fo

r C

A
N
SI

st
an

da
rd

fo
r C

(C
89

) re
le

as
ed

IS
O

re
le

as
ed
C
90

C
99

re
le

as
ed

by
IS
O

IS
O

re
le

as
ed
C
11

st
an

da
rd

Till ANSI standard which is almost the same as C90 (also called C89/C90) was

published, the standard specified in K&R book was used as a reference for C standard.

Each new standard aimed at easing the programming difficulty as well as making use of

Programming in C.

By Contributors Copyright c 2014 GATE CSE

9

10 DATA TYPES AND OPERATORS IN C

the new hardware features. We’ll be following as much of C11 standard as possible as it

adds some significant changes to C language.

2.2 Data types

Data types are used to represent data and data comes from real world. In real world we

have the following data types

Integer

Character

Real Numbers

All other data types can be formed from these basic types (for example, a string is just a

sequence of characters). So, in C language we have only these basic types but they are

supported in various data sizes as follows

short int

int

long int

long long int

char

float

double

long double

Now, each of these type is supported in unsigned version also. In signed version, one

bit is used to identify if the number is positive or negative. So, for a 32 bit signed integer,

it can represent only up to 231 − 1, while a 32 bit unsigned integer can represent up to

232 − 1. A boolean data type is also present in C standard which can be used to hold a bit.

This data type can be used using the keyword Bool. If we use an int (or char), to get a

boolean value, we need to logical AND (&) it with 1. With Bool, this conversion is not

necessary as the byte representing the boolean will always have the most significant 7 bits

as 0.

So, let’s see what these data types mean to computer. As we have seen in the previous

chapter, all data must be converted into a bit stream before being given to the processor.

So, even though we use alphabets and digits while writing programs, they are converted

to bits while stored in memory and then given to processor. How many bits a data type

takes is defined by the sizeof the data type. In C language, the operator sizeof gives the

no. of bytes (i.e., 8 * no. of bits) a data type takes. Since, memory accesses are restricted

to multiple of bytes (RAM doesn’t allow to access data at a granularity lower than 8 bits

at a time due to practical reasons) sizeof always return at least 1 for any data type. (A

Bool also take a byte of storage as that’s the smallest accessible unit in a memory, though

it actually requires just a bit of storage)

CONSTANTS AND VARIABLES 11

Now, lets see the sizeof the various data types in C. Since, the data types are directly

given to the processor, the sizeof data types depend on the processor architecture. So,

C standard just tells the minimum required size specification and have let the compiler

designers choose their size as per the processor architecture- C compilers are used for 8 bit

embedded processors to 64 bit desktop processors. So, this size variation does make sense.

Data type Min. size required

char 1

short int 2

int 2

long int 4

long long int 8

float 4

double 8

long double 10

sizeof char is 1 byte as it was sufficient for ASCII encoding. But for extended

ASCII character support, wchar t which supports up to 16 bits is defined in < stddef.h >.

C11 standard also defines char16 t or char32 t in < uchar.h > header file thus support-

ing Unicode characters which requires up to 21 bits. So, in today’s world, a char and an

int take the same size and integer variable (char32 t of 4 bytes) is used to store Unicode

characters and the data type char is used mainly to refer to a byte of data than an actual

character.

2.3 Constants and variables

We have seen the data types, but to use them in a program we need to have a variable. A

variable is a named entity to represent a specific data type. The type of a variable is fixed

during the program run, but its value can be changed, and hence the name variable. (In

an object oriented language like CPP , a class can be taken as a data type and its instance

become a variable). To assign a value to a variable we use constants. The following are

the example usage of variables and constants.

int a; // ’a’ is an int variable

a = 5; // 5 is an int constant

2.3.1 Constant Types

In C language we have the following constants

Integer constant

– Decimal constant

– Octal constant

– Hexadecimal constant

Floating constant

Character constant

Enumeration constant

12 DATA TYPES AND OPERATORS IN C

2.3.1.1 Integer Constant C standard supports decimal, octal and hexa-decimal con-

stants being used to assign integer values. Their example usage is as shown below.

#include <stdio.h>

int main()

{

enum month{jan = 1, feb, mar, apr, may, jun, july, aug, sep, oct,

nov, dec};//jan is having int value 1, feb value 2 and so on

int a,b,c;

a = 10; //10 is a decimal constant

b = 0xa; // a is a hexadecimal constant

c = 012; //12 is an octal constant

enum month d = oct; //oct is an enumeration constant

printf("a = %d, b = %d, c = %d, d = %d ",a,b,c,d);

return 0;

}

We can use an int instead of enum as both takes same amount of memory. But the use of

enum ensures that a variable can hold only a particular set of integer values rather than

the whole range of integers. Thus it leads to less program errors and makes the code more

readable by providing a set of defined constants

Here, a is having the decimal value of 10. So, in memory a will be like

000...1010

Similarly, b will be in memory like

000...1010

and c and d will also be like

000...1010

i.e.; all a, b, c and d are having same integer values given using different constants. The

memory to be allotted to an integer constant is determined by its value, minimum being

the sizeof(int). For example, 40 is allotted the sizeof(int) while 0xfffffffff is allotted

sizeof(long) as it won’t fit the sizeof(int) (assuming sizeof(int) is 4 and sizeof(long)
is 8).

2.3.1.2 Floating Constant The representation of a floating point number is implemen-

tation specific. C11 do specifies IEC 60559 format for floating point representation but

its not mandatory that all implementations must support them. But most current im-

plementations do support them and hence it’s good to have a look at them. This link

http://steve.hollasch.net/cgindex/coding/ieeefloat.html is a good

look as IEEE 754 is identical to IEC 60559.

Constant values can be assigned to float or double variables in various ways as shown

below. If a constant cannot be exactly representable in the float or double variable the

implementation is recommended to show a warning as per C standard. But this is just a

recommendation and not a strict requirement.

#include <stdio.h>

int main()

{

float a = 10.2;

CONSTANTS AND VARIABLES 13

float b = 2.3f;

double c = 3.4l;

double d = 1.2e-3;

printf("a = %.2f, b = %5.2f, c = %05.2lf, d = %le\n",a,b,c,d); //

Just diff format specifiers

//%.2f means 2 digits after decimal point will be printed

//%5.2f means the output will have a total of minimum 5 places

including 2 decimal digits and a point. If lesser digits are

there, then the remaining space is filled with white space.

//%05.2f is same as %5.2f except that the remaining space, if any,

are filled with 0s than white space

return 0;

}

2.3.1.3 Character Constant Characters can be assigned value either by using a char-

acter in single quotes or by giving the integer value from the character code. And this

int value can be given using hex or octal representation as well, as shown below. Escape

sequences are applicable to character constants like ′\n′, ′\t′ etc.

#include <stdio.h>

int main()

{

char a, b, c, d, e;

a = ’a’;

b = ’\0’;

c = 0;

d = ’\x41’; //41 is a hexa decimal value whose corresponding ANSII

char is assigned to d

e = ’\101’; //101 is an octal constant whose corresponding ASCII

char is assigned to e

printf("a = %d, b = %d, c = %d, d = %c e = %c",a,b,c,d,e);

return 0;

}

Here, a is having the ASCII value of ′a′ which is 97. So, in memory a will be like

01100001

Similarly, b and c will be in memory like

00000000 //ASCII value of \0 is 0

and d and e will be like

01000001

2.3.1.4 Enumeration Constant Enumeration constants are assigned integer values start-

ing from a given initial value which by default is 0. An example is shown below:

enum player{ Dhoni = 1, Kohli, Yuvraj, Aswin = 5, Jadeja, Mishra = 10};

Here, Dhoni is having an integer value 1, Kohli 2, Yuvraj 3, Aswin 5, Jadeja 6 and Mishra

10. That is, these names can be used wherever these values are needed.

14 DATA TYPES AND OPERATORS IN C

2.4 String Literal

A character string literal is a sequence of zero or more characters enclosed in double-

quotes, as in “xyz”. A UTF8 string literal is the same, except prexed by u8. A wide

string literal is the same, except prexed by the letter L, u, or U . All escape sequences

applicable to a character constant is applicable for a string literal except that for ′ an escape

sequence is not mandatory. Any sequence of string literals will be combined into a single

string literal during the translation phase of the compiler. Thus, “abc” “de” is equivalent

to “abcde”. Another important property of string literal is that it cannot be modified and is

usually stored in the RO Data segment.

char p[] = "hello world";

char *q = "hello world";

Here, individual characters of p can be modified as the characters of the string literal

“hello world” are copied to the memory allocated to p which is 12 bytes. But, individual

characters of the content of q can only be read and not modifiable as p is pointing to a

string literal, which is stored in the RO data segment of the program. i.e.

p[2] = ’p’; //valid

char c = q[2]; //valid

q[3] = ’q’; //Invalid

The last statement causes segmentation fault as explained in 1.1.1

2.5 Implicit Type Conversion

We can round off this chapter with an important point about implicit type conversion.

Whenever we do an operation with different data types, the lower ranked data type is

promoted to the higher ranked one, as, operations are meant to be performed on same

types of data. For example when we add an int and a float, the int is promoted to float
and addition of two floats takes place using two floating point registers. Similarly, when

we add a char and an int, the 8 bits of char is made into 32 bits (assuming 4 byte size for

int), by padding it with 0′s.

One important point about implicit type conversion is that, it depends only on the source

operands and is independent of the resultant data type. So, if we multiple two integers
and store in a long, the result will be calculated as int (usually 4 bytes) and then stored in

long (usually 8 bytes). Another common example of this behavior is for division operation.

When we divide two integers, the result will be int only, even if we assign it to a float.
So, in these cases the programmer has to explicitly cast one operand to the desired output

type.

2.5.1 What exactly happens during type conversion

Before reading the description below, think how it can happen- you won’t think wrong.

unsigned to signed or vice verse: There is no change in the representation in mem-

ory. When casting to signed, the most significant bit is taken as a sign bit which would

otherwise be used for representing the number. So, this type casting is necessary dur-

ing conditional checks as a negative number when type casted to unsigned will give a

huge int value.

PROBLEMS 15

char to int: If int is 4 bytes- the top 3 bytes are filled with 0’s and bottom most byte

is the same byte used to represent the char.

int to char: Only the lowermost byte of the int is taken and made to a char. So, if

int value is 511, its char value will be 255.

00000000 00000000 01111111 11111111 //511

//11111111 is 255

int to float or double: The fixed integer is converted to a representable floating point

value. So, this might cause a change to entire bits used to represent the integer.

float or double to int: The integral part of the floating point value is saved as integer.

The decimal part is ignored. For example, 5.9 will be changed to 5.

float to double: The extra mantissa bits supported in double are filled with 0’s so are

the extra exponent bits. The bits of float (32 of them) are used without modification.

double to float: The extra mantissa bits supported in double are truncated in floating

representation so do the extra exponent fields. If the truncated exponent field were non

zeroes, it might cause a change to other mantissa bits as well as the number would

then need an approximation to fit in a float size.

PROBLEMS

2.1 Consider an implementation where int is 4 bytes and long int is 8 bytes. Which of

the following initializations are valid?

#include <stdio.h>

int main()

{

long int a = 0x7fffffff * 0x7ffffff;

long int b = 0x7ffffffff * 0x7ffffff;

long int c = 0x7fffffff * 0x7fffffff;

long int d = 0x7fffffff * 0x7fffffffl;

printf("a = %ld, b = %ld, c = %ld, d = %ld\n", a, b, c, d);

return 0;

}

2.2 Consider an implementation where int is 4 bytes and long int is 8 bytes. What will

be the output of the following code?

#include <stdio.h>

int main()

{

int i = 0;

size_t a = sizeof i, b = sizeof (long);

printf("a = %zd, b = %zd\n", a, b); //If %zd is given the compiler

will automatically give it the correct type whether short, long

or normal. This is useful for special data types like size_t

whose size is implementation specific

return 0;

}

2.3 What will be printed by the following code?

16 DATA TYPES AND OPERATORS IN C

#include <stdio.h>

#include <string.h>

int main()

{

char buff[255] = "abc\

pee\n";

printf("%s", buff);

return 0;

}

2.4 What will be printed by the following code?

#include <stdio.h>

#include<string.h>

int main()

{

char buff[] = "abc" "hello";

printf("%zd\n", strlen(buff));

return 0;

}

2.5 How can you print the following sentence exactly as it is by changing the assignment

to buff?

"Hello\\" "World\\"

#include <stdio.h>

#include <string.h>

int main()

{

char buff[255] = "\0";

printf("%s", buff);

return 0;

}

2.6 What will be the output of the following code?

#include <stdio.h>

int main()

{

char *p = "Hello World";

char q[] = "Hello World";

printf("%zd %zd", $sizeof$ p, $sizeof$ *p);

printf("\n");

printf("%zd %zd", $sizeof$ q, $sizeof$ *q);

return 0;

}

PROBLEMS 17

2.7 What will be the output of the following code?

#include <stdio.h>

int main()

{

{

char a = 5;

int b = 5;

if(a == b)

printf("char and int compared equal\n");

}

{

int a = 5;

long int b = 5;

if(a == b)

printf("int and long compared equal\n");

}

{

float a = 5.0;

double b = 5.0;

if(a == b)

printf("float and double compared equal\n");

}

{

float a = 5.2;

double b = 5.2;

if(a == b)

printf("float and double again compared equal\n");

}

{

float a = 5.2;

if(a == 5.2)

printf("float compared equal with constant\n");

}

{

double a = 5.2;

if(a == 5.2)

printf("double compared equal with constant\n");

}

return 0;

}

2.8 What will be the output of the following code?

#include <stdio.h>

int main()

{

int a = 5;

if(a > -1)

printf("5 is > -1\n");

return 0;

}

18 DATA TYPES AND OPERATORS IN C

2.9 Both int and float on gcc takes 4 bytes and float can represent a wider range of

numbers than an int. Then what’s the advantage of int compared to float or why can’t

we just replace int with float?

2.10 Is there anything wrong with the following code? If so, how can we correct it?

#include <stdio.h>

int main()

{

int a, b;

scanf("%d%d", &a, &b);

float result = a/b;

printf("%d divided by %d is %f\n", a, b, result);

return 0;

}

